A Novel Sit4 Phosphatase Complex Is Involved in the Response to Ceramide Stress in Yeast

نویسندگان

  • Alexandra Woodacre
  • Museer A. Lone
  • Daniel Jablonowski
  • Roger Schneiter
  • Flaviano Giorgini
  • Raffael Schaffrath
چکیده

Ceramide is a building block for complex sphingolipids in the plasma membrane, but it also plays a significant role in secondary signalling pathways regulating cell proliferation and apoptosis in response to stress. Ceramide activated protein phosphatase activity has been previously observed in association with the Sit4 protein phosphatase. Here we find that sit4Δ mutants have decreased ceramide levels and display resistance to exogenous ceramides and phytosphingosine. Mutants lacking SIT4 or KTI12 display a shift towards nonhydroxylated forms of long chain bases and sphingolipids, suggesting regulation of hydroxylase (SUR2) or ceramide synthase by Sit4p. We have identified novel subunits of the Sit4 complex and have also shown that known Sit4 regulatory subunits-SAP proteins-are not involved in the ceramide response. This is the first observation of separation of function between Sit4 and SAP proteins. We also find that the Sit4p target Elongator is not involved in the ceramide response but that cells deficient in Kti12p-an accessory protein with an undefined regulatory role-have similar ceramide phenotypes to sit4Δ mutants. Therefore, Kti12p may play a similar secondary role in the ceramide response. This evidence points to a novel Sit4-dependent regulatory mechanism in response to ceramide stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A ceramide-activated protein phosphatase mediates ceramide-induced G1 arrest of Saccharomyces cerevisiae.

Certain mammalian growth modulators, such as tumor necrosis factor alpha, interleukin-1beta, and gamma-interferon, induce an antiproliferative response-terminal differentiation, apoptosis, or cell cycle arrest-through a novel signal transduction pathway mediated by the lipid ceramide as a second messenger. Both a ceramide-activated protein phosphatase and a ceramide-activated protein kinase hav...

متن کامل

Trans-Golgi network and endosome dynamics connect ceramide homeostasis with regulation of the unfolded protein response and TOR signaling in yeast.

Synthetic genetic array analyses identify powerful genetic interactions between a thermosensitive allele (sec14-1(ts)) of the structural gene for the major yeast phosphatidylinositol transfer protein (SEC14) and a structural gene deletion allele (tlg2Delta) for the Tlg2 target membrane-soluble N-ethylmaleimide-sensitive factor attachment protein receptor. The data further demonstrate Sec14 is r...

متن کامل

t-SNARE phosphorylation regulates endocytosis in yeast.

Earlier we demonstrated that activation of a ceramide-activated protein phosphatase (CAPP) conferred normal growth and secretion to yeast lacking their complement of exocytic v-SNAREs (Snc1,2) or bearing a temperature-sensitive mutation in an exocytic t-SNARE (Sso2). CAPP activation led to Sso dephosphorylation and enhanced the assembly of t-SNAREs into functional complexes. Thus, exocytosis in...

متن کامل

TORC1 Regulates Developmental Responses to Nitrogen Stress via Regulation of the GATA Transcription Factor Gaf1

UNLABELLED The TOR (target of rapamycin [sirolimus]) is a universally conserved kinase that couples nutrient availability to cell growth. TOR complex 1 (TORC1) in Schizosaccharomyces pombe positively regulates growth in response to nitrogen availability while suppressing cellular responses to nitrogen stress. Here we report the identification of the GATA transcription factor Gaf1 as a positive ...

متن کامل

Saccharomyces cerevisiae TORC1 Controls Histone Acetylation by Signaling Through the Sit4/PP6 Phosphatase to Regulate Sirtuin Deacetylase Nuclear Accumulation

The epigenome responds to changes in the extracellular environment, yet how this information is transmitted to the epigenetic regulatory machinery is unclear. Using a Saccharomyces cerevisiae yeast model, we demonstrate that target of rapamycin complex 1 (TORC1) signaling, which is activated by nitrogen metabolism and amino acid availability, promotes site-specific acetylation of histone H3 and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013